
International Journal of Engineering Science Invention

ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726

www.ijesi.org Volume 2 Issue 12 ǁ December. 2013 ǁ PP.36-43

www.ijesi.org 36 | Page

An Integrated Approach for Execution Time Reduction in

Embedded Applications

Shilpa.C
1
, K. Sivasankari

2

1
(Electronics and communication engineering, Akshaya college of engineering and Technology, INDIA)

2
(Electronics and communication engineering, Akshaya college of engineering and Technology, INDIA)

ABSTRACT: Scalable memory multiprocessors are becoming increasingly popular platforms for high-

performance scientific computing. In order to improve application performance on these machines, it is

essential to divide computation among processors. In complex embedded systems, the growing trend is to build

a multiprocessor system on chip (MPSoC). A MPSoC consists of multiple heterogeneous processing elements, a

memory hierarchy and input/output components which are linked together by an on chip interconnect structure.

Many embedded systems employ software managed memories known as Scratch Pad Memories (SPM). In SPM,

execution time of applications on systems can be accurately predicted. Scheduling the tasks and partitioning the

embedded application on the processors are two critical issues in such systems by using ASAP and ALAP

algorithms. In this paper, an integrated approach is presented for effective task scheduling and SPM

partitioning by round robin algorithm. The execution time of embedded applications is reduced by performing

round robin algorithm. Results on Lame benchmark show the significant improvement from our proposed

technique.

KEYWORDS: Execution time, Memory partitioning, Multiprocessor system on chip(MPSoC), Scheduling,

Scratchpad memory.

I. INTRODUCTION

Architectures with multiple processors on a single chip have become an attractive solution to achieve

performance in both high-end and low-end computing due to clock and power constraints. An MPSoC consists

of multiple heterogeneous processing elements, memory hierarchies and I/O components interconnected by

complex communication architecture provides the flexibility of simple design, high performance and optimized

energy consumption. While embedded systems become increasingly complex, the increase in memory access

speed has failed to keep up with the increase in processor speed. This makes the memory latency a major issue

in scheduling embedded applications on embedded systems. A MPSoC is an attractive solution to the increasing

complexity and size of embedded applications on embedded applications. Execution time complexity any size of

embedded applications; this means that data caches are not suitable since it is hard to model the exact behavior

and to predict the execution time of programs. To alleviate such problems, many modern MPSoC systems use

software controlled memories known as scratch pad memories (SPMs), which allow execution times to be

predicted with accuracy. Unfortunately, SPMs are expensive and hence they are usually of limited size. Many

multiprocessor systems on chip models use a memory hierarchy with slow off chip memory and fast on chip

scratchpad memories. Such hierarchy means that proper allocation of variables to the on chip memory is an

essential part in reducing the off-chip accesses. The computation time of a program on a processor depends on

the amount of SPM allocated to the processor executing this task. The problem of task scheduling and memory

allocation on MPSoCs is a NP (Non Polynomial) complete problem. Traditionally, these two steps are

performed separately where tasks are usually scheduled first and formed separately where tasks are usually

scheduled first and the SPM budget is then partitioned among the processors. Such a decoupled technique

minimize the computation time of the whole application. The integration of those two steps is critical to improve

the performance. To the best of our knowledge this is the first work to present integrated approach to task

scheduling and memory partitioning by round robin algorithm.

II. PREVIOUS COMPARITIVE STUDIES

Many research groups have studied the problem of task scheduling of applications on multiple

processors where the objective is to minimize execution time. Benini et al [3] solved the scheduling problem

using constraint programming and the memory partitioning problem using integer linear programming. Kwok

and Ahmed [2] presented a comparison among algorithms for scheduling task graphs onto a set of homogenous

processors on a diverse set of benchmarks based on set of assumptions.

An Integrated Approach for Execution Time…

www.ijesi.org 37 | Page

Fig. 1. Architectural model with five processors and sharing of SPM budget

De Micheli eta al[4] studied the mapping and scheduling problem onto a set of processing elements as

a hardware/software co-design. Neimann and Marwedel [5] used integer programming to solve the

hardware/software co-design partitioning problem. A tool for hardware-software partitioning and pipelined

scheduling based on a branch and bound algorithm. Similarly, Kuang et al [7] proposed an ILP solution for the

partitioning problem with pipelined scheduling. Cho et al [8] proposed an accurate scheduling mode of

hardware-software communication architecture to improve timing accuracy. Panda et al.[9],[10] presented a

comprehensive allocation technique for scratchpad memories on single processor. Optimal ILP formulations for

memory allocation for scratchpad memories were presented in [11] and [12]. An ILP formulation to the SPM

allocation problem to reduce the code size was presented in [13].Steinke et al. [14] formulated the same problem

with the objective to minimize the energy consumption. Angiolini et al [15] optimally solved the problem of

mapping memory locations to SPM locations using dynamic programming. Many authors have studied the

memory allocation problem in MPSoCs by a focus on data parallelism in the context of homogenous

multiprocessor systems. Kandemir et al [16] presented a compiler based strategy for optimizing energy and

memory access latency of array dominated. In [17], the authors proposed an ILP formulation for the memory

partitioning problem on MPSoC. Suhendra et al [18] studied the problem of integrated task scheduling and

memory partitioning among a heterogeneous multiprocessor system on chip with scratch pad memory. This is

the only paper that addressed this problem in an integrated approach for MPSoC. They formulated this problem

as an integer linear problem (ILP) with the inclusion of pipelining. ILP solutions require long computation time

for large applications.

Fig. 2. (a) Task Dependance graph based on (b) no SPM, (c) equal partitioned SPM, (d) nonequal partitioned

SPM, (e) integrated approach.

An Integrated Approach for Execution Time…

www.ijesi.org 38 | Page

III. PROBLEM DEFINITION

Fig.1 depicts a typical MPSoC which consists of multiple processors, a shared SPM budget divided

among the processors, and a global off chip memory that can be accessed by all processors. Our techniques can

also be used for an architecture where each processor has private SPMs of other processors. Dividing an

application into a set of tasks where one or more independent tasks can be executed in parallel on the available

processors. Parallelism leads to potential for speeding up the execution time; this is a major issue in embedded

processors. Embedded applications usually consist of computation blocks, which are treated as tasks. There are

usually dependences between tasks that should be respected in the schedule. Problem is defined based on task

dependence graph (TDG). TDG is a directed acyclic graph with weighted edges where each vertex represents a

task in the embedded application. An edge from task 1 to task 2 represents a scheduling order. Data is

transferred from task 1 to task2 and executed. Communication cost is the weight of this edge. Processor starts

executing only after task 1 performs necessary data communication. Processors are mapped with necessary

tasks. The processors are heterogeneous. Data variables are accessed by execution cycles of task. Data variable

accessed by SPM is 100 times faster than the off chip memory. By narrowing the gap with the processor’s speed

there is good utilization of SPM. The problem is defined as 1) schedule the tasks on available processors 2)

SPM partitioning among the processors 3) data variables are assigned to certain task on processor P with a

private SPM assigned. The objective is minimization of execution time in cycles of execution of the embedded

application on the MPSoCs architectural model

IV. ROUND ROBIN ALGORITHM

The scheduler maintains a queue of ready processes and a list of blocked and swapped out processes.

The Process Control Block of newly created process is added to end of ready queue. The Process Control Block

of terminating process is removed from the scheduling data structures. The scheduler always selects the Process

Control Block from the head of the ready queue. This is a disadvantage, since all processes are basically given

the same priority. Round robin also favors the process with short CPU burst and penalizes long ones. When a

running process finishes its time slice, it is moved to end of ready queue. A time slice is an amount of time that

each process spends on the processor per iteration of the Round Robin algorithm. All processes are executed in a

first come first serve manner but are pre-empted after a time slice .The process will either finish in the time slice

given to the process will be returned to the tail of the ready queue and return to the processor. An embedded

applications is divided into tasks and for each tasks ASAP (As Soon As Possible) values is calculated. Based

on the increasing order of values, tasks are stored in list. When the list is full, first task from list is taken as

shown in Fig. 3

Fig. 3. Flowchart describing task allocation to List

For the tasks from list, elasticity and minimum execution time of each task is calculated. If elasticity of

task 1 is minimum than task 2, then task 1 is assigned to processor as shown in Fig. 3.

An Integrated Approach for Execution Time…

www.ijesi.org 39 | Page

V. INTEGRATED APPROACH

Mostly works are treated task scheduling and memory partitioning as two decoupled steps that are

performed by first scheduling the tasks onto processors and then partitioning memory among processors. The

problems due to independent approach are solved in an integrated fashion. In the proposed technique the

integrated approach is applied to lame benchmark applications to show the significant improvement of our

integrated approach in pre-emptive scheduling algorithm. Consider the example in Fig. 2 of a task graph with

six tasks t1, t2, t3, t4, t5, and t6. Task 4 depends on task1, task2, task3 and task 6 depends on tasks4 and

task5.there is an edge between two tasks t1 and t2 means that a communication cost should be calculated.

Calculating minimum, average and maximum and the computation time for task t1 on processor Pi and assuming

all the variables of SPM between two tasks t1 and t2 i.e. communication cost should be calculated. The

computation time for task t1 on processor Pi assumes all the variable SPM depends on task1, task2, task3 and

task6 depends on tasks4 and task5. There is an edge between two tasks t1 and t2 i.e. a communication cost

should be calculated.1/n of the available SPM budget is assigned to Pi. Where n is the number of processors, and

no SPM is assigned to Pi. Task t5 will not be scheduled at this point based on its ALAP value. First tasks t1 and

t2 will be mapped to the two available processors Pi and PJ. The scheduling algorithm will map t3 to PJ as it is

free before Pi since the computation time of t2 is less than of t1, in a similar fashion, the scheduling algorithm.

Fig. 2 shows the results of the common practice of partitioning the available SPM memory equally between the

two processors P1 and P2. Equally partitioned SPM reduces the computation time of the whole application to

25.96s. Nonequal partitioned SPM reduces the computation time of the whole application to 20.589s. Our

integrated approach reduces the computation time to 17.79s. The computation time is reduced by dividing the

SPM in any ratio. From the scheduled task, task T4 can only start after P2 is done executing task T3.The issue

now is to try to reduce the dead time between tasks T1 and T4 imposed by the computation time for tasks T2 and

T3. Minimizing the dead time, by locating more SPM budget to processor P2 reduces the computation time of

task T2 and T3. Tasks to which SPM memory is allocated to processor P2 then the computation time for task 1

will jump to 17 and the results for the minimum start time of T4 will increase from 16 to 17. Increase can be

avoided by allocating some SPM memory to P1, so the execution time will be balanced to end of task T3. The

problem with the previous schedule is that it allocated T3 to the same processor P2 that is scheduled to execute

T2. The elasticity of a task is defined as the extent to which this task can benefit from a larger SPM. Elasticity is

defined as the extent to which the computation cost of task on Pi may decrease as the SPM budget of Pi is

increased from the current budget to size, where size is the maximum amount of SPM budget available in

model. Equation (1) defines elasticity of task T1 where cur is the computation time of the task under the current

memory budget. The elasticity of task T1 is a measure of the room for computation time reduction of T1 with

more SPM budget.

A bigger value of elasticity means that the computation time of T1 is more amenable for reduction with

the increase in the SPM allocated to that task. Elasticity is a number between 0 and 1 for uniformity.

VI. EXPERIMENTAL RESULT

Our heuristic starts with profiling the application to extract important information. Using the profiling

data, the embedded application will be divided into tasks with a necessary data communication between the two

tasks imposing a certain kind of dependence. From Fig. 3, for each task T i and processor PJ, we calculate the

number of variables, the size of the variables, and Minimum values.

Fig. 4. Flowchart for calculating elasticity and minimum execution time for each task from list

An Integrated Approach for Execution Time…

www.ijesi.org 40 | Page

All these values are computed based on profiling and the ASAP values for all tasks are calculated

based on the average values. The minimum start time of a task Ti on processor PJ, START_TIME (Ti,Pi), is

equal to the maximum of the end time of processor Pi, END_TIME(Pi), and the corresponding communication

time. Two independent tasks mapped to the same processor will have zero communication cost. For lame

benchmark, the overhead time provided that the predicted end computation time (PEC(P i)) of this processor is

β% less than that of PJ. Equation (2) represents the calculation of PEC. The PEC of a processor is clearly related

to the elasticity of the tasks scheduled on that processor.

The operating system used for the execution of the five tasks is Linux operating system. The

benchmark used is LAME benchmark. This type of benchmark is used for audio application. In Linux the

operating system used is Fedora 12.0. It is a leading edge, free and open source operating system that continues

to deliver innovative features to many users, with a new release about every six months. It helps to have

optimized performance and faster updates. Three input files are considered for LAME benchmark. Three files

are considered as three audio files of size 8 KB, 14 KB and 22 KB. The execution time, priority and elasticity

for these input files are calculated. Scratch memory address lines are the ones not assigned by cache address

lines.

Fig. 5. Result of Round robin scheduling algorithm

From Fig. 5, five tasks are given the time period with number of configured processors mentioned.

From the results remaining quantum values for each task is calculated.

Fig. 6. Simulation result of calculating computation time with no scratch pad memory

An Integrated Approach for Execution Time…

www.ijesi.org 41 | Page

Fig. 6. shows the simulation result of calculating computation time with no scratch pad memory .This

shows the usage of hardware controlled memory, cache memory when used in embedded application, executes

the computation at 31.57s. It is high when compared to the usage of software controlled memory. Elasticity

value is 0.96832. Based on this elasticity execution time is reduced.

Fig. 7. Simulation result of calculating computation time with equal scratch pad memory

Fig. 7, shows the simulation result of calculating computation time with equal partition of scratch pad

memory. This shows the usage of software controlled memory, scratch pad memory when used in embedded

application, executes the computation at 25.96s. Elasticity value is 0.9614.

Fig. 8. Simulation result of calculating computation time with nonequal scratch pad memory

Fig. 8 shows the simulation result of calculating computation time with non equal partition of scratch

pad memory .This shows the usage of software controlled memory, scratch pad memory when used in

embedded application, executes the computation at 20.589s. Elasticity value is 0.9514.

An Integrated Approach for Execution Time…

www.ijesi.org 42 | Page

Fig. 9. Simulation result of calculating computation time with integrated approach

Fig. 9 shows the simulation result of calculating computation time with integrated approach of effective

memory partitioning and scheduling. This shows the usage of software controlled memory, scratch pad memory

when used in embedded application, executes the computation at 17.769s. Elasticity value is 0.9437.

Fig. 10. Processing audio files of 8kb, 14kb and 22kb with lame benchmarks

Fig. 10 shows the simulation result of calculating computation time processing audio files. Three audio

files of 8kb, 22kb and 14kb are processed.8kb executes for five approaches with minimum execution time. ILP

(Integer linear programming) takes less computation time when compared to other approach.

An Integrated Approach for Execution Time…

www.ijesi.org 43 | Page

Above table explains the CPU burst time for execution of each approach. The approach included are

non equal partitioning, equal partitioning of SPM memory, integrated approach with effective pipelining and

memory partitioning, integer linear programming.

VII. CONCLUSION

In this paper, we presented an effective heuristic that integrates effective task scheduling and memory

partitioning with varying ratios of embedded applications on multiprocessor system on chip with scratch pad

memory. Although this project has addressed some problem, there are some issues related to what has been done

and are still opened to be solved. The analysis in this project considers that priorities of the tasks are assigned

before performing the analysis. However, a non covered issue in this project is to find an optimal priority

assignment for the tasks in the task dependence graph. Our effective integrated approach overcome the

disadvantage of widely used decoupled approach and significantly improves the results since the appropriate

partitioning of SPM spaces among different processors depends on the tasks scheduled on each of those

processors

REFERENCES
[1] L. Benini, D. Bertozzi, A. Guerri, and M. Milano, “Allocation and scheduling for MPSOC via decomposition and no-good

generation,” in Proc. IJCAI, 2005, pp. 107–121.

[2] Y.-K. Kwok and I. Ahmad, “Benchmarking and comparison of the task graph scheduling algorithms,” J. Parallel Distributed

Comput., vol. 59,no. 3, pp. 381–422, Dec. 1999.
[3] Y. Cho, N.-E. Zergainoh, S. Yoo, A. Jerraya, and K. Choi, “Scheduling with accurate communication delay model and scheduler

implementation for multiprocessor system-on-chip,” Des. Automat. Embedded Syst., vol.11, nos. 2–3, pp. 167–191, 2007.

[4] P. Panda, N. D. Dutt, and A. Nicolau, “On-chip vs. off-chip memory:The data partitioning problem in embedded processor-based
systems,”ACM Trans. Des. Automat. Electron. Syst., vol. 5, no. 3, pp. 682–704,Jul. 2000.

[5] O. Avissar, R. Barua, and D. Stewart, “An optimal memory allocation scheme for scratch-pad-based embedded systems,” ACM

Trans. Embedded Comput. Syst., vol. 1, no. 1, pp. 6–26, Nov. 2002.
[6] A. Dominguez, S. Udayakumaran, and R. Barua, “Heap data allocation to scratch-pad memory in embedded systems,” J.

Embedded Comput., vol. 1, no. 4, pp. 521–540, Dec. 2005.

[7] G. D. Micheli, R. Ernst, and W. Wolf, Readings in Hardware/Software Co-Design. San Francisco, CA: Morgan Kaufmann,
2002

[8] S.-R. Kuang, C.-Y. Chen, and R.-Z. Liao, “Partitioning and pipelined scheduling of embedded systems using integer linear

programming,” in Proc. ICPADS, 2005, pp. 37–41.M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University
Science, 1989.

[9] P. Panda, N. Dutt, and A. Nicolau, Memory Issues in Embedded Systemson-Chip: Optimization and Exploration. Dordrecht, The

Netherlands:Kluwer,1999.
[10] Z. Ma, C. Wong, S. Himpe, E. Delfosse, F. Catthoor, J. Vounckx, and G. Deconinck, “Task concurrency analysis and exploration

of visual texture decoder on a heterogeneous platform,” in Proc. IEEE Workshop Signal Process. Syst., Aug. 2003, pp. 245–250.

[11] R.Neimann and P.Marwedel, “Hardware/software partitioning using integer programming,” in Proc. DATE, 1996, pp. 473–
480.K. Elissa, “Title of paper if known,” unpublished.

[12] J. Sjodin and C. V. Platen, “Storage allocation for embedded processors,” in Proc. Int. Conf. CASES, Nov. 2001, pp. 15–23.

[13] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel, “Assigning program and data objects to scratchpad for energy reduction,”
in Proc.DATE, 2002, pp. 409–415.

[14] F. Angiolini, L. Benini, and A. Caprara, “Polynomial-time algorithm for on-chip scratchpad memory partitioning,” in Proc. Int.

Conf. CASES, 2003, pp. 318–326.M.
[15] M.Kandemir, J. Ramanujam, and A. Choudhury, “Exploiting shared scratch pad memory space in embedded multiprocessor

systems,” in Proc. DAC, 2002, pp. 219–224.

[16] O. Ozturk and M. Kandemir, “An integer linear programming based approach to simultaneous memory space partitioning and
data allocation for chip multiprocessors,” in Proc. IEEE ISVLSI, Mar. 2006, p. 6.

[17] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory optimization and task scheduling for MPSOC

architecture,” in Proc. Int. Conf. CASES, 2006, pp. 401–410.
[18] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A tool for evaluating and synthesizing multimedia and

communications systems,” in Proc. IEEE Int. Symp. Microarchitecture, Dec. 1997, pp. 330–335.

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “Mibench: A free, commercially
representative embedded benchmark suite,” in Proc. IEEE 4th Annu. Workshop Workload Characterization, Dec. 2001, pp. 3–

14.

